
This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Isobaric Vapour Liquid Equilibrium Data for Binary Systems Phenol-Di-Isopropyl Ether and 2,4-Xylenol-Di-Isopropyl Ether

N. V. K. Dutt^a; S. P. Selvam^a; I. Balkishan Rao^a; Y. V. L. Ravi Kumar^a ^a Indian Institute of Chemical Technology, Hyderabad, India

To cite this Article Dutt, N. V. K., Selvam, S. P., Rao, I. Balkishan and Kumar, Y. V. L. Ravi(1996) 'Isobaric Vapour Liquid Equilibrium Data for Binary Systems Phenol-Di-Isopropyl Ether and 2,4-Xylenol-Di-Isopropyl Ether', Physics and Chemistry of Liquids, 31: 3, 183 – 187

To link to this Article: DOI: 10.1080/00319109608029572 URL: http://dx.doi.org/10.1080/00319109608029572

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1996, Vol. 31, pp. 183–187 Reprints available directly from the publisher Photocopying permitted by license only © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

ISOBARIC VAPOUR LIQUID EQUILIBRIUM DATA FOR BINARY SYSTEMS PHENOL-DI-ISOPROPYL ETHER AND 2,4-XYLENOL-DI-ISOPROPYL ETHER

N. V. K. DUTT*, S. P. SELVAM, I. BALKISHAN RAO and Y. V. L. RAVI KUMAR

Indian Institute of Chemical Technology Hyderabad - 500 007, India

(Received 3 October 1995)

Motivated by chemical engineering design purposes, isobaric vapour liquid equilibrium data on two binary mixtures has been obtained. The temperature-mole fraction data were measured in a Swietoslawski ebulliometer.

KEY WORDS: Vapour pressures and compositions, binary mixtures.

INTRODUCTION

For the economic viability of the low temperature carbonization of coal it is necessary to process the resulting tar to yield the value-based chemicals such as phenols. During the processing of tar, the di-isopropyl ether-phenol mixtures are encountered, necessitating the use of vapor liquid equilibrium (vle) data on such systems for designing separation plants. The aim of the present work is to report the results obtained on the vle studies on the Phenol-Di-iso propyl ether and 2,4-Xylenol-Di-isopropyl ether binary mixtures, at an isobaric pressure of 723 mm Hg. The vapor compositions, y, corresponding to the measured temperature (t)-mole fraction (x) data are computed by using the NRTL method.

EXPERIMENTAL SECTION

The t-x measurements on the two binaries were carried out in a Swietoslawski ebulliometric set up described briefly elsewhere¹. The materials used in the investigation were purified by means of a Podbielniak hypercal distillation column. The physical properties of the materials are reported in Table 1 along with those from the literature

^{*}Author for correspondence.

used for comparison purposes. The Antoine constants needed for the calculation of the pure component vapor pressures are also reported in the Table. The pressure and the temperature measurements reported in the present work were precise to 1 mm Hg and 0.1°C respectively.

About 130 ml. of the binary mixture was introduced into the ebulliometer. A steady reading on the mercury thermometer accompanied by a steady condensate drop rate (using the drop counter) in the range of 20-30 drops per minute as recommended by Hala *et al*², were taken as the criteria for the attainment of the equilibrium between the phases.

RESULTS AND DISCUSSION

The vapor composition of the component $i(y_i)$ is calculated from the equation

$$P_t Y_i \varphi_i = \gamma_i P_i^0 X_i \tag{1}$$

where P_i and P_i^0 are total pressure of system, vapor pressure of the component *i*, φ and γ are the vapor phase non-ideality factor and the activity coefficient respectively and x_i and y_i are the mole fractions of the component *i* in liquid and vapor phases respectively. For near-ideal vapor phase condition, where in $\varphi_i \simeq 1.0$ the Eqn. (1) reduces to the form

$$P_t Y_i = \gamma_i P_i^0 X_i \tag{2}$$

For a binary system one can write:

$$P_t = X_1 P_1^0 \gamma_1 + X_2 P_2^0 \gamma_2 \tag{3}$$

Compound			Densit	y, g·ml ⁻¹ Ref.	Index	
	This work	Lit.	Ref.	This work	Lit.	Ref.
Phenol	1.0537(45)*	1.0540	6	1.5415(41)	1.5417	4
2,4-Xylenol	1.0165(25)	1.0160	7	1.5417(20)	1.5420	5
Di-isopropyl ether	0.7209(23)	0.7200	6	1.3690(23)	1.3678	6
			Antoine	Constants		-
Compound		A		В	С	Ref.
Phenol		7.13457	15	16.07	174.569	7
2,4 Xylenol		7.04694	15	81.40	168.650	7
Di-isopropyl ether		6.93051	11	72.45	221.220	5

 Table 1
 Densities, refractive indices and Antoine constants of pure compounds.

*Values given in brackets denote the reference temperature in °C.

Downloaded At: 08:13 28 January 2011

The vapor pressures P_1^0 and P_2^0 are calculated by using the Antoine equation

$$\log P^0 = A - \frac{B}{t+C} \tag{4}$$

where P^0 is in mm Hg, corresponding to the temperature in °C. The activity coefficients γ_1 and γ_2 are calculated by means of the well-known NRTL model³, where the model parameters $(g_{12} - g_{22}), (g_{22} - g_{11})$ and a_{12} are assumed to be the functions of temperature represented by the equations:

$$g_{12} - g_{22} = A_1 + B_1(T - 273.15)$$

$$g_{22} - g_{11} = A_2 + B_2(T - 273.15)$$

$$a_{12} = A_3 + B_3(T - 273.15)$$
(5)

with T in $^{\circ}K$ and $A_1, A_2 \dots B_1 \dots B_3$ as the constants.

Substituting the values of the activity coefficients γ_1 and γ_2 calculated from the NRTL equation and the vapor pressures of the pure components, P_1^0 and P_2^0 (calculated from the Eqn. (4)) in the equation

$$P_{t,cal} = X_1 P_1^0 \gamma_1 + X_2 P_2^0 \gamma_2 \tag{6}$$

the total pressure P_t is calculated.

Table 2 lists the values of the NRTL constants $A_1 \dots B_3$ needed for the calculation of the activity coefficients along with the % average absolute deviations (\bar{e}) obtained for the two binaries studied.

The % average absolute deviation \bar{e} , is calculated from

$$\bar{e} = \frac{E|e|}{N} \tag{7}$$

System	Parameter	s (Eq. 5)	No. of data points	Temperature Range, °C	PAAD
Phenol (1)-Di-isopropyl ether (2)	A1 = 1398 A2 = 9159 A3 = 0.1149	B1 = -9.011 B2 = -15.94 B3 = 0.001332	17	65.9-167.4	2.9
2,4 Xylenol(1)- Di-isopropyl ether (2)	A1 = 205.03 $A2 = 1243.00$ $A3 = -0.02557$	B1 = 1.4693 B2 = -7.6501 B3 = 0.006541	17	67.8 – 179.1	1.6

 Table 2
 Temperature-dependent NRTL Model Parameters and Percent Average Absolute Deviations (PAAD) on Pressure.

t,°C	Phenol(1)-Di-Ise	PAAD	
	<i>x</i> ₁	y*1	on Pressure
65.9	0.0562	0.0027	7.0
67.1	0.1094	0.0039	7.9
68.1	0.1970	0.0060	4.3
68.5	0.2694	0.0076	0.5
69.1	0.3130	0.0084	-0.7
69.8	0.3634	0.0093	-1.5
71.2	0.4156	0.0103	0.0
71.9	0.5180	0.0115	-2.7
79.1	0.7103	0.0161	6.1
82.1	0.7913	0.0198	2.8
87.9	0.8453	0.0283	-1.0
94.4	0.8630	0.0388	0.0
112.4	0.8850	0.0834	6.1
119.4	0.9028	0.1199	0.0
135.3	0.9200	0.2228	0.0
145.3	0.9357	0.3347	-3.8
167.4	0.9618	0.6375	4.7
% average	absolute deviation		2.9
t,°C	2, 4-X ylenol (1)-Di-isopropyl ether (2)		PAAD
	<i>x</i> ₁	<i>y</i> [*] ₁	on Pressure
67.8	0.0862	0.0020	-2.0
68.4	0.1690	0.0023	-2.1
68.8	0.2158	0.0024	-1.3
69.4	0.2919	0.0025	0.0
70.6	0.3934	0.0026	2.3
70.9	0.4979	0.0028	0.8
71.9	0.6022	0.0032	-1.5
77.2	0.7025	0.0045	0.6
82.6	0.8006	0.0071	-6.3
94.8	0.8502	0.0132	2.0
96.9	0.8695	0.0156	-2.4
104.9	0.8927	0.0231	0.4
106.9	0.9019	0.0263	-1.6
113.3	0.9184	0.0362	-2.5
122.6	0.9316	0.0531	1.4
146.1	0.9595	0.1406	0.0
179.1	0.9755	0.4268	0.0

 Table 3
 VLE Data for the Systems Phenol(1)-Di-isopropyl ether (2) and 2,4-Xyleneol(1)-Di-isopropyl ether (2) at 723 mm Hg.

 y_1^* calculated from NRTL model.

where E is the summation of the modulus of the errors, e, determined over N data points. The error e is estimated from

$$e = 100 \left(\frac{P_{t, \exp} - P_{t, \operatorname{Calc}}}{P_{t, \exp}} \right)$$
(8)

where $P_{t,exp}$ is the isobaric experimental pressure over which the data were obtained. In the present work, the *t*-*x* data were obtained at a pressure of 723 mm Hg.

The results obtained on fitting vapor compositions, y, to the t-x data (obtained from the ebulliometer), using the method described are reported in Table 3. It can be seen from the Tables 2 and 3 that the data are adequately represented by the NRTL method and hence can be used for design purposes.

NOMENCLATURE

A, B, C A	Antoine Constants
A_1, A_2, A_3 N	NRTL temperature-dependent parameters defined by the Eqn. (5)
B_{1}, B_{2}, B_{3}	
e p	ercent deviation between the experimental and calculated pressures
d	lefined by the Eqn. (8).
g ir	nteraction parameter in the NRTL equation
	omponent
N n	umber of data points
P_t to	otal pressure, mm Hg
P_t to P^0 v	apor pressure, mm Hg
T a	bsolute temperature, °K
t te	emperature in °C
X li	quid phase mole fraction
Y v	apor phase mole fraction
	nodulus
	ummation of
a N	Non-randomness parameter in the NRTL equation
y a	ctivity coefficient
•	apor phase non-ideality factor

Subscripts

exp	experimental value of
cal	calculated value of

References

- 1. N. V. K. Dutt, A. P. Kahol and P. Jyothiraju, J. Chem. Eng. Data, 27, 369 (1982).
- 2. E. Hala, J. Pick, V. Fried and O. Vilim, Vapor Liquid Equilibrium (Pergamon, London, 1958).
- 3. R. C. Reid, J. M. Prausnitz and T. K. Sherwood, *The Properties of Gases and Liquids*, 3rd edn. (McGraw Hill Book Co., New York, 1977).
- 4. R. R. Dreisbach, Physical Properties of Chemical Compounds (Am. Chem Soc., Washington, 1955).
- 5. R. C. Weast, CRC Handbook of Chemistry and Physics, 63rd edn. (CRC Press Inc., Boca Raton, 1982).
- 6. J. A. Dean, Lange's Handbook of Chemistry, 11th edn. (McGraw Hill Co., New York, 1973).
- 7. R. J. L. Andon, E. D. P. Biddiscombe, J. D. Cox, R. Hanley, D. Harrop, E. F. G. Herrington and J. F. Martin, J. Chem. Soc., 5246 (1960).